General Instructions:
1. All questions are compulsory.
2. Questions 1 to 5 are very short answer questions and carry 1 mark each.
3. Questions 6 to 10 are short answer questions and carry 2 marks each.
4. Questions 11 to 22 are short answer questions and carry 3 marks each.
5. Question no.23 is value based and carries 4 marks.
6. Questions 24, 25 and 26 are long answer questions and carry 5 marks each.
7. Use log tables if necessary.

1. State Pauli exclusion principle. 1
2. Write the Lewis dot structure of CO. 1
3. How many significant figures are there in the following:
 a) 0.00368
 b) 3.653 x 10^4 1
4. Find the number of sigma and pi bonds
 a) CH₃CH=CH₂ b) C₃H₄ 1
5. Justify the presence of 32 elements in the sixth period of the periodic table. 1
6. Define dipole moment. Why is the dipole moment of NF₃ less than that of NH₃? 2
7. An oxide of nitrogen contains 30.43% of nitrogen. The molecular weight of the compound is equal to 92. Calculate the molecular formula of the compound. [Atomic mass of N=14, O=16] 2
8. What are isoelectronic species? Arrange the following species in the increasing order of their size; Mg²⁺, Al³⁺, Na⁺, O²⁻, F⁻ 2
9. What are the possible values of l and m_l for an electron in a 4f orbital? Why 4s is orbital filled before 3d orbital? 2
10. Mention the shape and hybridization of PCl₅ and SF₆. 2
11. Give reasons:
 a) Noble gases have large positive electron gain enthalpies.
 b) Ionization enthalpy of nitrogen is more than that of oxygen.
 c) The size of anion is always larger than that of parent atom. 3
12. What is meant by bond order? Calculate the bond orders of O₂⁻ and O₂²⁻ ions. 3
13. a) Define Octet rule and mention its limitations. 3
 b) Write the resonating structures of CO₃²⁻.
14. a) What is a limiting reagent?
 b) Nitrogen and hydrogen react to produce ammonia according to the equation
 \(\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightarrow 2\text{NH}_3(\text{g}) \). Calculate the mass of ammonia produced if 2.00x10^3 g of
 nitrogen reacts with 1.00x10^3 g of hydrogen.

15. Calculate the number of atoms of each element present in 5.3 g of Na_2CO_3.
 [atomic mass of Na=23, C=12, O=16]

16. a) Explain the formation of hydrogen molecule on the basis of valence bond theory.
 b) Predict the shapes of NH₃ and CCl₃ molecules using VSEPR theory.

17. i) What is meant by
 a) Stark effect
 b) Emission spectrum?
 ii) List two main differences between orbit and orbital.

18. a) What is the basic difference between electron gain enthalpy and electronegativity?
 b) Write the IUPAC name and symbol for the element with atomic number 117.

19. Yellow light emitted from a sodium lamp has a wavelength of 580 nm. Calculate
 the frequency and wavenumber of the yellow light.

20. Although both CO₂ and H₂O are triatomic molecules, the shape of H₂O molecule
 is bent while that of CO₂ is linear. Explain on the basis of dipole moment.

 OR

 Besides tetrahedral geometry, another possible geometry of CH₄ is square
 planar with four hydrogen atoms at the corner of the square and C atom at the
 centre. Why CH₄ can’t adopt square planar geometry?

21. a) Mention four properties of cathode rays.
 b) Write the electronic configuration of copper.

22. Give the IUPAC name of the following compounds:
 i) CH₂=CH-CH₂-CH₃ ii) CH₃-CH(CH₃)₂CH₂-CH(CH₃)-CH₃

23. Mendeleev was a versatile genius. He worked on many problems connected
 with natural resources. He invented an accurate barometer. Mendeleev had a
 most important contribution in periodic table and discovery of new elements by
 predicting their properties.
 a) In terms of period and group where would you locate the element with
 \(Z = 114 \)?
 b) Why should we conserve our natural resources?
 c) What values were possessed by Mendeleev?
24. a) Define photo electric effect? Explain this effect on the basis of quantum theory of electromagnetic radiation.
b) What is the wavelength of light emitted when the electron in a hydrogen atom undergoes a transition from an energy level with n=4 to n=2?
 (OR)
 a) Describe the series of hydrogen spectrum and the region to which they belong with a diagram.
b) The threshold frequency for a metal is $7.0 \times 10^{14} \text{ s}^{-1}$. Calculate the kinetic energy of an electron emitted when radiation of frequency $1.0 \times 10^{15} \text{ s}^{-1}$ hits the metal.

25. i) What are bonding and anti-bonding molecular orbitals? Mention the conditions for the combination of atomic orbitals.
 ii) Discuss the shape of C_2H_2 on the basis of hybridization.
 iii) Write any two differences between sigma and pi bonds.
 OR
 i) Write any four salient features of molecular orbital theory. Using molecular orbital theory explain why He_2 molecule does not exist?
 ii) What is a hydrogen bond? Explain with examples.

26. i) Define molality. Why molality is preferred over molarity for expressing the concentration of a solution
 ii) A sugar syrup of weight 214.2g contains 34.2g of sugar ($\text{C}_{12}\text{H}_{22}\text{O}_{11}$). Calculate
 a) Molal concentration
 b) Mole fraction of sugar in the syrup [atomic mass of $\text{C}=12, \text{H}=1$ and $\text{O}=16$]
 OR
 Define molarity. Concentrated HCl is 38% by mass. What is the molarity of this solution if density equals 1.19 g cm^{-3}?
 b) What volume of conc. HCl is required to make 1.00L of 0.10M HCl? [atomic mass of $\text{H}=1, \text{Cl}=35.5$]
INTERNATIONAL INDIAN SCHOOL-DAMMAM
FIRST TERMINAL EXAMINATION-JUNE2015
CLASS -XI CHEMISTRY- SET-B

TIME: 3 Hrs
MAX. MARKS: 70

General Instructions:

1. All questions are compulsory.
2. Questions 1 to 5 are very short answer questions and carry 1 mark each.
3. Questions 6 to 10 are short answer questions and carry 2 marks each.
4. Questions 11 to 22 are short answer questions and carry 3 marks each.
5. Question no. 23 is value based and carries 4 marks.
6. Questions 24, 25 and 26 are long answer questions and carry 5 marks each.
7. Use log tables if necessary.

1. How many significant figures are there in the following:
 a) 0.00368
 b) 3.653 x 10^4

2. Justify the presence of 32 elements in the sixth period of the periodic table.

3. Write the Lewis dot structure of CO.

4. Find the number of sigma and pi bonds
 a) CH₃CH=CH₂
 b) C₆H₆

5. State Pauli exclusion principle.

6. An oxide of nitrogen contains 30.43% of nitrogen. The molecular weight of the compound is equal to 92. Calculate the molecular formula of the compound. [Atomic mass of N=14, O=16]

7. Mention the shape and hybridization of PCl₅ and SF₆.

8. Define dipole moment. Why is the dipole moment of NF₃ less than that of NH₃?

9. What are isoelectronic species? Arrange the following species in the increasing order of their size: Mg²⁺, Al³⁺, Na⁺, O²⁻, F⁻

10. What are the possible values of l and m for an electron in a 4f orbital? Why is 4s orbital filled before 3d orbital?

11. a) Define Octet rule and mention its limitations.
 b) Write the resonating structures of CO₃²⁻.

12. Give reasons:
 a) Noble gases have large positive electron gain enthalpies.
 b) Ionization enthalpy of nitrogen is more than that of oxygen.
 c) The size of anion is always larger than that of parent atom.

13. Calculate the number of atoms of each element present in 5.3g of Na₂CO₃. [Atomic mass of Na=23, C=12, O=16]
14. a) What is a limiting reagent?
 b) Nitrogen and hydrogen react to produce ammonia according to the equation $N_2(g) + H_2(g) \rightarrow 2NH_3(g)$. Calculate the mass of ammonia produced if 2.00×10^3 g of nitrogen reacts with 1.00×10^3 g of hydrogen.

15. What is meant by bond order? Calculate the bond orders of O_2^- and O_2^{2-} ions.

16. a) Explain the formation of hydrogen molecule on the basis of valence bond theory.
 b) Predict the shapes of the molecules using VSEPR theory:
 NH_3 and ClF_3

17. a) What is the basic difference between electron gain enthalpy and electronegativity?
 b) Write the IUPAC name and symbol for the element with atomic number 117.

18. Although both CO_2 and H_2O are triatomic molecules, the shape of H_2O molecule is bent while that of CO_2 is linear. Explain on the basis of dipole moment.
 OR

Besides tetrahedral geometry, another possible geometry of CH_4 is square planar with four hydrogen atoms at the corner of the square and C atom at the centre. Why CH_4 can’t adopt square planar geometry.

19. Given the IUPAC name of the following compounds:
 i) $CH_2=CH-CH_2-CH_3$
 ii) $CH_3-CH(CH_3)_2-CH_2-CH(CH_3)-CH_3$

20. Yellow light emitted from a sodium lamp has a wavelength of 580 nm. Calculate the frequency and wavenumber of the yellow light.

21. a) Mention four properties of cathode rays.
 b) Write the electronic configuration of copper.

22. i) What is meant by
 a) Stark effect
 b) Emission spectrum?
 ii) List two main differences between orbit and orbital.

23. Mendeleev was a versatile genius. He worked on many problems connected with natural resources. He invented an accurate barometer. Mendeleev had a most important contribution in periodic table and discovery of new elements by predicting their properties.
 a) In terms of period and group where would you locate the element with $Z=114$?
 b) Why should we conserve our natural resources?
 c) What values were possessed by Mendeleev?

24. a) Describe the series of hydrogen spectrum and the region to which they belong with a diagram.
 b) The threshold frequency for a metal is 7.0×10^{14} s$^{-1}$. Calculate the kinetic energy of an electron emitted when radiation of frequency 1.0×10^{15} s$^{-1}$ hits the metal.
 OR
 a) Define photo electric effect? Explain this effect on the basis of quantum theory of electromagnetic radiation.
 b) What is the wavelength of light emitted when the electron in a hydrogen atom undergoes a transition from an energy level with $n=4$ to $n=2$?
25. a) Define molarity. Concentrated HCl is 38% by mass. What is the molarity of this solution if density equals 1.19 g cm\(^{-3}\)?
b) What volume of conc. HCl is required to make 1.00 L of 0.10 M HCl? [atomic mass of H=1u, Cl=35.5u]

OR

Define molality. Why molality is preferred over molarity for expressing the concentration of a solution

ii) A sugar syrup of weight 214.2 g contains 34.2 g of sugar (C\(_{12}\)H\(_{22}\)O\(_{11}\)). Calculate
a) Molal concentration
b) Mole fraction of sugar in the syrup [atomic mass of C=12, H=1 and O=16]

26. i) Write any four salient features of molecular orbital theory. Using molecular orbital theory explain why He\(_2\) molecule does not exist?
ii) What is a hydrogen bond? Explain with examples.

OR

i) What are bonding and anti-bonding molecular orbitals? Mention the conditions for the combination of atomic orbitals.
ii) Discuss the shape of C\(_2\)H\(_2\) on the basis of hybridization.
iii) Write any two differences between sigma and pi bonds.