INTERNATIONAL INDIAN SCHOOL, DAMMAM
UPPER PRIMARY SECTIONS
MID TERM EXAM REVISION WORKSHEET (2023-24)
CLASS : III
SUBJECT: MATHEMATICS
Name: \qquad Section: \qquad Roll No: \qquad

LESSON 2 - ADDITION

I. FILL IN THE BLANKS:

1. The numbers that are being added are called \qquad .
2. When we add \qquad to a number, the sum is the number itself.
3. $173+$ \qquad $=345+173$.
4. \qquad should be added to 5000 to make it 5006.
5. The sum of the largest 3 -digit number and the smallest 4-digit number is \qquad .

II. CHOOSE THE CORRECT ANSWER:

1. $\operatorname{In} 7+3=10$; addends are \qquad
a) 10,3
b) 7,10
c) 7,3
2. If 1 is added to 3059 , the answer will be \qquad
a) 3095
b) 3060
c) 3050
$3.52+48=$ \qquad
a) 100
b) 110
c) 80
3. \qquad $+0=2392$
a) 2392
b) 2390
c) 0
4. Mayank had 327 Indian stamps and 256 foreign stamps in his collection. How many stamps does Mayank have in his collection?
a) 527
b) 583
c) 364

III. MATCH THE FOLLOWING:

1. 15 ones
a) smallest 4 digit number
2. $999+1$
b) 3999
3. $664+151$
c) 1 ten +5 ones
4. 10 more than 790
d) $151+0+664$
5. Number before 4000
e) 800

IV. STATE TRUE OR FALSE:

1. 4 hundreds +9 ones $=409$
2. $203+300+0=0$
3. When we add 7 to 33 , we get 43
4. The sum is always greater than the numbers being added except when one of the numbers is a zero.
5. 10 ones make 1 ten \qquad

V. FIND THE SUMS:

1. $202+248+512$
2. $4632+2204$
3. $316+225+213$
4. $3234+2412+1001$

VI. WORD PROBLEMS:

1. A postman delivered 253 letters in the month of March and 327 letters in the month of April. How many letters did the postman deliver in total in the two months?
\square

LESSON 3 - SUBTRACTION

I. FILL IN THE BLANKS:

1. 36 children were at the park. 12 children left. How many are still in the park? \qquad
2. 100 less than 5102 is \qquad .
3. If 100 is subtracted from 3800 , the difference will be \qquad .
4. When we subtract a number from itself, the answer is always \qquad .
5. 4799 is 1 less than \qquad .

II. CHOOSE THE CORRECT ANSWER:

1. $69+$ \qquad $=100$
a. 31
b. 21
C. 11
2. If you subtract me from 100 , you get 25 . Who am I?
a. 25
b. 85
c. 75
3. $\ln 17-15=2$, the number \qquad is called the difference.
a. 15
b. 2
C. 17
4. Ram has 23 balloons. He gave 11 balloons to his brother. How many balloons are left with Ram?
a. 11
b. 21
c. 12
5. \qquad $-100=295$
a. 395
b. 295
c. 359

III. MATCH THE FOLLOWING:

1. 76-9
a) 256
2. A number-1
b) 70
3. $110-40$
c) 25
4. 1000 less than 1256
d) Its previous number
5. $86+25-86$
e) 67

IV. STATE TRUE OR FALSE:

1. If we change the order of the numbers being subtracted, the difference will not change.
\qquad .
2. It is not possible to check subtraction with addition. \qquad
3. The difference between 19 and 5 is 12 . \qquad
4. We always subtract a smaller number from bigger number. \qquad
5. $1000-1=9999$ \qquad

V. FIND THE FOLLOWING:

1. 572-257
2. $907-175$
3.8541-3341
3. Subtract 267 from 613
4. Difference between 9349 and 2145

VI. WORD PROBLEMS:

1. In a library, there are 743 books. 457 books were issued to the students. How many books remained unissued in the library.

LESSON 4 - MULTIPLICATION

I. FILL IN THE BLANKS:

1. Any number multiplied by zero is always \qquad .
2. The multiplication fact for $5,6,30$ is \qquad .
3. \qquad $x 6=36$.
4. 5 cars have \qquad wheels.
5. The answer in multiplication is called \qquad .

II. CHOOSE THE CORRECT ANSWER:

1. Compare 7×8 \qquad $7+8$
a. $>$
b. $=$
C. $<$
2. 9 weeks = \qquad days
a. 81
b. 63
c. 72
3. There are 3 buttons in a packet. How many buttons are there in 8 such packets?
a. 15
b. 24
c. 32
4. $3 \times 3 \times 3 \times 0=$
a. 0
b. 27
C. 9
5. 8 octopuses have \qquad legs.
a. 46
b. 64
c. 56

III. MATCH THE FOLLOWING:

1. 6×3
a) 9×4
2. $4 \times 4-16$
b) 8
3. Number of eggs in 4 dozen
c) 0
4. $1 \times 8 \times 1$
d) $10+8$
5. $9 \times 9 \times 9 \times 9$
e) 48

IV. STATE TRUE OR FALSE:

1. $1293 \times 34 \times 0=0$
2. Multiplication is repeated subtraction.
3. Any number multiplied by 1 gives the same number as the product. \qquad
4. There are 42 shoes in 12 pairs. \qquad
5. 8 groups of 6 is 48 . \qquad

V. SOLVE:

1. Write the multiplication fact

This is a \qquad by \qquad array.
\qquad x \qquad $=$ \qquad .

VI. MULTIPLY:

1. 76×7
2. 93×8
3. 221×9
4. 247×5
5. 934×4
6. 682×6

LESSON 8 - SHAPES, SPACE AND PATTERNS

I. FILL IN THE BLANKS:

1. The point where two sides meet is called the \qquad or \qquad .
2. In a rectangle \qquad sides are equal.
3. Give 2 examples of cube: \qquad , \qquad .
4. The \qquad of a solid shape is called its face.
5. A sphere has \qquad edge, \qquad faces and \qquad corner.

II. STATE TRUE OR FALSE:

1. All the sides in a triangle are always equal.
2. Globe is an example of a sphere.
3. A circle has one vertex.
4. All the sides are equal in a square.
5. A cylinder has 2 edges, 3 faces and 0 corners.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
III. DRAW LINE OF SYMMETRY FOR THE FOLLOWING SHAPES:

IV. PUT A TICK ON THOSE SHAPES THAT TILE:

\square
\square
\square
\square

V. WHAT'S NEXT:

1.

2. \square Λ \square $\bigcirc \square$ \qquad , \qquad , \qquad
3. $12,24,36$, \qquad , \qquad , \qquad
4. $2,5,8$, \qquad , \qquad ,
5. $\mathrm{A}, \mathrm{BB}, \mathrm{CCC}, \mathrm{DDDD}$, \qquad , \qquad
VI. DRAW A CYLINDER AND WRITE THE FOLLOWING:
a. Number of faces \qquad
b. Number of edges \qquad
c. Number of corners \qquad

VII. FILL IN THE BLANKS AND COMPLETE THE GRID:

\square

ACROSS

1. Cube, Cuboid and cylinder are \qquad shapes.
2. \qquad is the result of subtraction problem.
3. Pictures arranged in rows and columns are called \qquad .

DOWN

4. We can add the number in any \qquad .
5. \qquad is made of shapes that fit into each other without gaps.
6. A party cap is an example of a \qquad shape.

